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ABSTRACT: The Penman–Monteith equation (PM) is widely recommended by The Food 

and Agriculture Organization (FAO) as the method to calculate reference evapotranspiration 

(ET0). However, the detailed climatological data required by the PM are not often available. 

The present study aimed to develop bayesian regularized neural networks (BRNN)-based ET0 

models and compare its results with the PM approach. Forteen weather stations wre selected 

for this study,located in Juazeiro (BA) and Petrolina (PE) counties, Brazil. BRNN were 

trained with different parameters choices and obtained R² between 0.96 and 0.99 during 

training and between 0.95 and 0.98 with validation? dataset. Root mean squared error 

(RMSE) less than 0.10 mm.day-1 for BRNN when compared to PM denoted the good 

performance of the network. 
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UTILIZAÇÃO DE REDES NEURAIS COM REGULARIZAÇÃO BAYESIANA NA 

MODELAGEM DE EVAPOTRANSPIRAÇÃO DE REFERÊNCIA EM 

AGROECOSSISTEMAS SEMIÁRIDOS 

 

RESUMO: A equação de Penman-Monteith (PM) é amplamente recomendada pela Food and 

Agriculture Organization (FAO) como método para calcular a evapotranspiração de referência 

(ET0), no entanto, os dados climatológicos detalhados exigidos pelo PM frequentemente não 

estão disponíveis. O presente estudo objetivou desenvolver modelos de ET0 baseados em 

redes neurais de regularização bayesiana (RNRB) e comparar seus resultados com a 
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abordagem PM. As 14 estações meteorológicas selecionadas para este estudo estão 

localizadas nos municípios de Juazeiro (BA) e Petrolina (PE). RNRBs foram treinadas com 

diferentes opções de parâmetros e obtiveram R² entre 0,96 e 0,99 durante o treinamento e 

entre 0,95 e 0,98 com o conjunto de dados do teste, erro médio quadrático (EMQ) menor que 

0,10 mm.dia-1 em comparação ao PM. 

PALAVRAS-CHAVE: modelagem, R, Bayes, inteligência artificial na agricultura 

 

 

INTRODUCTION 

 

According to Kumar et al. (2002), evapotranspiration is a complex and nonlinear 

phenomenon, because it depends on the interaction of several climatic elements as solar 

radiation, wind speed, air humidity, and temperature, as well as on the type and growth stage 

of the crop. According to Pereira et al. (2002), the selection of a method for estimating the 

evapotranspiration depends on several factors. 

One of these factors is the availability of meteorological data, as the complex methods 

requiring a high number of variables have applicability only when all necessary data are 

available. When there is availability of data, Allen et al. (1998) recommend the application of 

the Penman-Monteith (PM) as the sole standard method for the definition and computation of 

the reference evapotranspiration (ETo). Although the meteorological variables necessary for 

the application of the PM method are not always universally available, in particular those 

related to the solution of the aerodynamic term, wind speed and the deficit of water vapor 

pressure in the air. So, the methods for estimating ETo as a function of the climatic elements 

that might be obtained on a more practical way, such as the air temperature and the 

extraterrestrial radiation, are very important. A tool that can be used to estimate ETo is the 

artificial neural network (ANN).   

According Haykin (1999) an Artificial Neural Network (ANN) is a popular statistical 

method which can explore the relationships between variables with high accuracy. 

Essentially, the structure of an ANN is computer-based and consists of several simple 

processing elements operating in parallel. An ANN consists of three layers: input, hidden, and 

output layers, hence it is referred to as a three-layer network. The input layer contains 

independent variables that are connected to the hidden layer for processing. The hidden layer 

contains activation functions and it calculates the weights of the variables in order to explore 

the effects of predictors upon the target (dependent) variables. In the output layer, the 
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prediction or classification process is ended and the results are presented with a small 

estimation error.  

In ANNs, some regularization techniques are used with the backpropagation training 

algorithm to obtain a small error. This causes the network response to be smoother and less 

likely to overfit to training patterns (HAYKIN, 1999). However, the backpropagation 

algorithm is slow to converge and may cause an overfitting problem. Backpropagation 

algorithms that can converge faster have been developed to overcome the convergence issue. 

Similarly, some regularization methods have been developed to solve the overfitting problem 

in ANNs. Among regularization techniques, Levenberg–Marquardt (LM) and Bayesian 

Regularization (BR) are able to obtain lower mean squared errors than any other algorithms 

for functioning approximation problems (HAGAN, MENHA, 1994). LM was especially 

developed for faster convergence in backpropagation algorithms. Essentially, BR has an 

objective function that includes a residual sum of squares and the sum of squared weights to 

minimize estimation errors and to achieve a good generalized model.   

In order to estimate reference evapotranspiration in the state of Rio de Janeiro, Zanetti 

et al. (2008) used a neural network considering geographic coordinates and air temperature. 

Alves Sobrinho et al. (2011) developed an ANN capable of estimating ETo through data of 

daily air temperature for the region of Mato Grosso do Sul and the neural network obtained 

the best adjustment, compared with the conventional methods. For example, Abedi-Koupai et 

al. (2009) used two hidden layers with five neurons, each one with four input values, one 

output layer and log-sigmoid function, and obtained coefficient of determination of 0.95 for 

reference evapotranspiration in protected environment. 

In this paper we applied bayesian regularized neural networks (BRNN) to simulate PM-

based reference evapotranspiration with less variables than the original PM formulation in a 

semiarid area from Brazil. 

 

 

MATERIAL AND METHODS 

 

Figure 1 shows the location of the reference semiarid area (dashed red square on the 

right side) inside the Petrolina County, Pernambuco state, Northeast of Brazil, together with 

the net of forty agrometeorological stations (blue arrows) used for the weather data 

interpolation processes in a geographic information system (GIS) environment. 

 



César de Oliveira Ferreira Silva et al. 

 

Figure 1. Location of agrometeorological stations in Petrolina/PE and Juazeiro/BA. 

 

The reference evapotranspiration is the evapotranspiration referring to a hypothetical 

crop that completely covers the soil, is in active growth, does not present water and nutritional 

restriction, and presents specific characteristics such as albedo equal to 0.23 and height 

between 8 and 15 cm. Among the various methods of ETo estimation, the Penman-Monteith, 

presented by the FAO, is recommended as the standard, according to Equation 1. 

 

ET0_day =
0,408(Rn − G) + [γ (

900

T + 273
) u2(es − ea)]

∆ + γ(1 + 0,34 u2)
 (1) 

 

where Δ (kPa C-1) is the slope of the saturated vapor pressure curve, γ is the psychrometric 

constant (kPa °C-1), T is the daily average air temperature, ea is the actual water vapor 

pressure of the air (kPa), es is the saturated water vapor pressure (kPa),  (es − ea) (kPa) is the 

vapor pressure deficit in the air near the vegetated surfaces, Rn is the net radiation and G is the 

soil heat flux. 

A neural network is formed by simple elements operating in parallel. Inspired by a 

biological neural network, the neural network receives its independent neurons in its input. 

The variables are passed to subsequent layers of neurons, where, passing through a transfer 
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function, the weighted sum of input values is calculated, providing an output for the neuron in 

analysis (WANG et al., 2017). The bayesian regularized neural networks (BRNN) are more 

robust than the networks that use the back propagation of the errors, besides avoiding the 

over-fitting of the model (TICKNOR, 2013). Regularization refers to limiting the scale of 

weights and thresholds to improve the generalization ability of the neural network. In other 

words, on the basis of the neural network error function MSE, a penalty term, which can 

approximate the complex function, is added, thus improving the neural network function as 

the following Equation 2. 

 

F = βED + αEW (2) 

 

where the square of the network weights is described as Equation 3. 

 

EW = ln ∑ Wi

n

0

 (3) 

 

Wi is the weight of the neural network connection; n is the total number of samples; ED is the 

sum of the residuals of the expected value and target value of the neural network; and α and β 

represent the regularization parameters that determine the training target of the neural network 

and control the degree of fit achieved. 

Bayesian regularization takes the objective function of the traditional neural network 

model as a likelihood function. The regularizer corresponds to the prior probability 

distribution on the network weights, and the network weights are regarded as a random 

variable. A Bayesian regularization neural network refers to a forward neural network based 

on Bayesian regularization training. Using a hypothesized parameter probability distribution, 

this network learns in the whole weight space and evaluates relevant parameters.  

It then adjusts the regularization parameter and performs adaptive adjustment of the 

regularization parameters using Bayesian inference based on the posterior distribution. 

According to the probability density of weights to determine the optimal weighting function, 

and under the premise of ensuring the smallest squared network error, the weights are 

minimized to provide effective control of network complexity and to improve network 

generalization ability. Bayesian regularization optimizes the fit of the neural network of the 



César de Oliveira Ferreira Silva et al. 

training samples and minimizes model complexity by improving the training performance 

function of the neural network. 

 

 

RESULTS AND DISCUSSION 

 

The air temperature varied from 21.8 to 26.5°C, whereas ETo ranged from 1.6 to 7.8 

mm. BRNN were trained with different parameters choices and obtained R² between 0.96 and 

0.99 during training and between 0.95 and 0.98 with test dataset, and root mean squared error 

(RMSE) less than 0.10 mm.day-1 compared to PM.  

Table 1 show results for four parameters combination scenarios. Similar results were 

reported by Kumar et al. (2008) comparing an ANN model with the methods of Hargreaves 

and Penman-Monteith (PM-56) for the estimation of reference evapotranspiration, with 

coefficient of determination of 0.90. 

 

Table 1. Weights found in the training of bayesian regularized neural networks (RBNN) to predict the reference 

evapotranspiration with only three variables (air temperature, solar radiation and wind speed at average daily 

scale) 

Neurons MC Samples α β EW ED RMSE (mm.day-1) R2 

2 20 0,34 150,97 31.05 17.19 0,10 0.97 

5 40 0.56 223.06 45.46 11.57 0,08 0.98 

10 40 0.17 253.71 290.01 10.07 0,06 0.98 

15 40 0.73 122.23 43.94 21.06 0,07 0.97 

 

Figure 2 shows the relationship between simulated values by BRNN and PM-sample 

values that were not applied in BRNN training. 
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Figure 2. Performance of bayesian regularized neural networks (RBNN) trained to predict the reference 

evapotranspiration for different combinations of parameters 

 

The success of neural networks is directly related to their great versatility and it makes 

them a very promising tool for decision taking. The selection of the parameters defined by the 

user also contributed to the optimal performance of the ANN in the estimation of reference 

evapotranspiration. It is important to point out that other network architectures or other 

parameters can also be applied for similar situations and that the proposed solution was 

selected to present the potential of application of the tool and its good performance. 
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CONCLUSIONS 

 

Daily reference evapotranspiration calculated by Penman-Monteith can be simulated 

with less variables by a bayesian regularized neural networks with a great precision, showing 

high accuracy and using only air temperature, solar radiation and wind speed at average daily 

scale as input variable. 
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