

TROCAS GASOSAS NA CULTURA DO AMENDOIM SOB ESTRESSE SALINO E HÍDRICO

Geocleber Gomes de Sousa¹, Andreza de Melo Mendonça², Geovana Ferreira Goes³, Márcio Henrique da Costa Freire⁴, Valdécio dos Santos Rodriguês⁵, Silas Primola Gomes ⁶

RESUMO: Objetivou-se avaliar os aspectos fisiológicos da cultura do amendoim submetido ao estresse salino e hídrico. O experimento foi conduzido na Unidade de Produção de Mudas das Auroras (UPMA), Redenção – CE. O delineamento experimental foi inteiramente casualizado (DIC), em parcelas subdivididas, na qual as parcelas referem-se aos diferentes níveis de condutividade elétrica da água de irrigação - CEa (1,0; 2,0; 3,0; 4,0 e 5,0 dS m⁻¹) e as subparcelas, os regimes hídricos de 50 e 100% da evapotranspiração da cultura (ETc). Aos 44 dias após a semeadura (DAS) foram analisadas as seguintes variáveis: fotossíntese, condutância estomática e a transpiração. O aumento da salinidade da água de irrigação reduziu a transpiração. O regime hídrico de 100% da ETc proporcionou maior fotossíntese, transpiração e condutância estomática.

PALAVRAS-CHAVE: Arachis hypogaea L., fotossíntese, salinidade, deficit hídrico

GAS EXCHANGES IN PEANUT CULTURE UNDER SALINE AND WATER STRESS

ABSTRACT: The objective was to evaluate the physiological aspects of peanut culture submitted to saline and water stress. The experiment was carried out at the Auroras Seedling Production Unit (UPMA), Redenção - CE. The experimental design was completely randomized (DIC), in subdivided plots, in which the plots refer to the different levels of electrical conductivity of the irrigation water - CEa (1.0; 2.0; 3.0; 4.0 and 5.0 dS m-1) and the subplots, the water regimes of 50 and 100% of the crop evapotranspiration (ETc). At 44 days after sowing (DAS), the following variables were analyzed: photosynthesis, stomatal

⁵ Doutorando em Ciências do solo, Universidade Federal do Paraná/UFP, Curitiba, PR.

¹ Prof. Dr., Instituto de Desenvolvimento Rural/IDR, Universidade da Integração Internacional da Lusofonia Afro-Brasileira/ UNILAB, CEP 62790-000, Redenção, CE. Fone: (85) 3332-6101, e-mail: sousagg@unilab.edu.br

² Mestranda em Ciência do Solo, Universidade Federal do Ceará/UFC, Fortaleza, CE.

³ Graduanda em Agronomia, Universidade da Integração Internacional da Lusofonia Afro-Brasileira/ UNILAB, Redenção, CE.

⁴ Mestrando em Ciência do Solo, Universidade Federal do Ceará/UFC, Fortaleza, CE.

⁶ Prof. Dr., Instituto de Desenvolvimento Rural/IDR, Universidade da Integração Internacional da Lusofonia Afro-Brasileira/ UNILAB, Redenção, CE.

conductance and transpiration. Increasing the salinity of irrigation water reduced perspiration. The water regime of 100% of ETc provided greater photosynthesis, transpiration and stomatal conductance.

KEYWORDS: *Arachis hypogaea*., photosynthesis, salinity, water deficit.

INTRODUÇÃO

O amendoim (*Arachis hypogaea* L.) pertencente à família das Fabaceae, é considerado uma das principais oleaginosas alimentares do mundo (SANTOS et al., 2012). No entanto, está sujeito a variados estresses abióticos, sendo um deles a deficiência hídrica, condição frequente no semiárido Nordestino devido aos baixos índices de pluviosidade, proporcionando menor crescimento das culturas, distúrbios fisiológicos e nutricionais (PEREIRA FILHO et al., 2019).

Outro problema a ser enfrentado nas regiões semiáridas é concernente à qualidade da água, principalmente no tocante a presença de sais que acabam reduzindo o potencial osmótico da solução do solo. A presença dos sais também prejudica as funções fisiológicas, provocando o fechamento estomático, uma das primeiras respostas ao estresse para evitar a perda excessiva de água pela planta em condições de restrição hídrica (TAIZ et al., 2017) afetando todo o processo de trocas gasosas (PEREIRA FILHO et al., 2019). O presente trabalho teve como objetivo avaliar os aspectos fisiológicos da cultura do amendoim submetido ao estresse salino e hídrico.

MATERIAL E MÉTODOS

O experimento foi realizado entre os meses de agosto a setembro de 2019, na Unidade de Produção de Mudas Auroras (UPMA), pertencente a Universidade da Integração Internacional da Lusofonia Afro-Brasileira (UNILAB), Redenção-CE. O clima da região é do tipo Aw', sendo caracterizado como tropical chuvoso, muito quente, com chuvas predominantes nas estações do verão e outono.

O delineamento estatístico foi inteiramente casualizado (DIC) em parcelas subdivididas, sendo a parcela os diferentes níveis de condutividade elétrica da água de irrigação - CEa (1,0; 2,0; 3,0; 4,0 e 5,0 dS m⁻¹) e as subparcelas os regimes hídricos de 50 e 100%, com cinco repetições. O substrato utilizado foi a partir de uma mistura de solo e areia na proporção 3:2, respectivamente. As características químicas do solo, estão apresentados na Tabela 1.

Tabela 1. Atributos químicos do substrato.

MO	K^+	Ca^{2+}	Mg^{2+}	Na^+	$H^{+}+Al^{3+}$	Al^{3+}	PST	pH em água	CEes
	cmolc.kg ⁻¹						%		(dS.m ⁻¹)
3,21	0,67	1,00	0,90	0,37	1,26	0,05	9	6,6	0,92

MO- Matéria orgânica; PST- percentagem de solo trocável; CEes- Condutividade elétrica do extrato de saturação do solo.

A semeadura da cultura do amendoim, acesso 26 pertencente ao banco de germoplasma da UNILAB, foi realizada em vasos plásticos, com volume de 8 L, adotando-se cinco sementes por vaso em uma profundidade de 2 cm. Aos 10 DAS foi feito o desbaste, deixando apenas duas plantas. Em seguida deu-se início aos tratamentos com água salina e regimes hídricos.

As águas de irrigação foram preparadas usando-se os sais NaCl, $CaCl_2.2H_2O$ e $MgCl_2.6H_2O$, com a água de abastecimento de CEa de 0,5 dS m⁻¹ na proporção de 7:2:1, respectivamente, obedecendo a relação entre CEa e sua concentração (mmol_c L⁻¹ = CE x 10) (RHOADES et al., 2000).

Para a determinação da estimativa diária da evapotranspiração de referência – ETo foi calculado de acordo com o princípio do lisímetro de drenagem (BERNARDO et al., 2019). A evapotranspiração da cultura foi estimada (ETc), através da equação 1, mediante a multiplicação da evapotranspiração de referência e o coeficiente da cultura (Kc).

$$ETc = ETo \ x \ Kc \tag{1}$$

Em que: *ETc* - Evapotranspiração potencial da cultura (mm); *ETo* - Evapotranspiração de referência (mm); *Kc* - Coeficientes de cultivo.

As adubações foram aplicadas a partir da análise química do substrato e da exigência nutricional da cultura de acordo com a recomendação máxima da adução química descrita por Fernandes (1993), a qual compreende 15 kg ha⁻¹ de N, 62,5 kg ha⁻¹ de P₂O₅ e 50 kg ha⁻¹ de K₂O. Aos 45 DAS foram analisados a taxa de fotossíntese líquida (*A*), condutância estomática (*gs*) e a transpiração (*E*), utilizando-se um analisador de gás no infravermelho IRGA (LI 6400 XT da LICOR), em sistema aberto, com fluxo de ar de 300 mL min⁻¹; as medições foram feitas entre 8 e 10 h, em folhas completamente expandidas.

Os dados foram submetidos à análise variância (ANOVA), pelo teste F e, quando significativos, os dados referentes à CEa foram submetidos a análise de regressão e os dados de regime hídrico ao Teste de Tukey a 1 e 5% de significância por meio do programa computacional ASSISTAT 7.7 beta.

RESULTADOS E DISCUSSÃO

A fotossíntese foi significativamente influenciada pelos regimes hídricos (Figura 1A). As plantas de amendoim submetidas ao regime de 50% constataram um declínio de 31,59% (5,39 mmol m⁻² s⁻¹) em comparação ao regime de 100% (7,88 mmol m⁻²s⁻¹). Essa redução pode estar relacionada ao fechamento parcial dos estômatos, ou seja, plantas submetidas a deficiência hídrica, apresentam adaptações às condições adversas, como a redução da área foliar e inibição da fotossíntese (TAIZ et al., 2017).

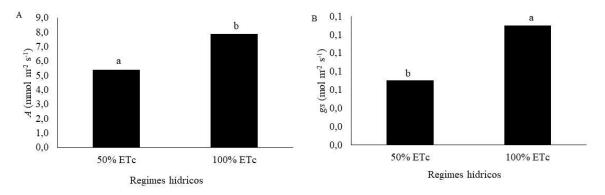
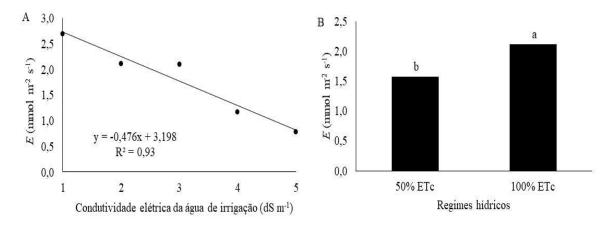



Figura 1. Fotossíntese (A) e condutância estomática (B) das plantas de amendoim em função dos regimes hídricos.

Avaliando as trocas gasosas do feijão-caupi em resposta a deficiência hídrica, Souza et al. (2020) encontraram resultados similares ao estudo. Esses mesmos autores descrevem que houve redução da taxa fotossintética em resposta ao déficit hídrico. A condutância estomática em função dos regimes hídricos está apresentada na Figura 1B.

Observa-se que as plantas de amendoim submetidas ao regime de 50% tiveram uma redução de 46,15% (0,07 mmol m⁻² s⁻¹) em comparação ao regime de 100% (0,13 mmol m⁻²s⁻¹). Sousa et al. (2014) trabalhando com a cultura do amendoim sob déficit hídrico através de frequência de irrigação, também encontraram resultados similares ao desse estudo.

Figura 2. Transpiração do amendoim em função da condutividade elétrica da água de irrigação (A) e em função dos regimes hídricos (B).

Para a transpiração em função da condutividade elétrica da água de irrigação, o modelo linear foi o que melhor se ajustou aos dados (Figura 2A), apresentando uma redução de 25,12% nos valores de *E* das plantas do amendoinzeiro quando irrigadas com água mais salina. Pereira Filho et al. (2019) avaliando as respostas fisiológicas da cultura da fava submetida ao estresse salino e hídrico obtiveram resultados em que, os efeitos dos sais presentes na água de irrigação causaram uma redução linear na transpiração da cultivar Espírito Santo.

A transpiração também foi significativamente influenciada pelos regimes hídricos (Figura 2B). Observa-se que as plantas de amendoim submetidas ao regime de 50% obtiveram uma redução de 70,59% (1,7 mmol m⁻² s⁻¹) em comparação ao regime de 100% (2,12 mmol m⁻² s⁻¹). Esse resultado demonstra que a uma menor disponibilidade de água a planta diminui sua taxa de transpiração reduzindo a perda de água e com isso economiza a quantidade disponível no solo (TAIZ et al., 2017).

CONCLUSÕES

O aumento da salinidade da água de irrigação reduziu a transpiração. O regime hídrico de 100% da ETc proporcionou maior fotossíntese, transpiração e condutância estomática

REFERÊNCIAS BIBLIOGRÁFICAS

BERNARDO, S.; MANTOVANI, E. C.; SILVA, D. D. SOARES, A. A. **Manual de irrigação**. 9. ed. Viçosa: Editora UFV, 2019. 545 p.

FERNANDES, V. L. B. **Recomendações de adubação e calagem para o Estado do Ceará**. Fortaleza: UFC, 1993. 248p.

PEREIRA FILHO, J. V.; VIANA, T. V. A.; SOUSA, G. G.; CHAGAS, K. L.; AZEVEDO, B. M.; PEREIRA, C. M. S. Physiological responses of lima bean subjected to salt and water stresses. **Revista Brasileira de Engenharia Agrícola e Ambiental**, v. 23, n. 12, p. 959-965, 2019.

RHOADES, J. D.; KANDIAH, A.; MASHALI, A. M. Uso de águas salinas para produção agrícola. Campina Grande: UFPB, 2000. 117 p.

SANTOS, D. B.; FERREIRA, P. A.; **OLIVEIRA, F. G.**; BATISTA, R. O.; COSTA[,] A. C.; CANO[,] M. A. O. Produção e parâmetros fisiológicos do amendoim em função do estresse salino. **Idesia**, v.30, n.2, p.69-74, 2012.

SOUSA, G. G. AZEVEDO, B. M.; FERNANDES, C. N. V.; VIANA, T. V. A.; SILVA, M. L. S. Crescimento, trocas gasosas e produtividade do amendoim sob frequência de irrigação. **Revista Ciência Agronômica**, v. 45, n. 1, p. 27-34, 2014.

SOUZA, P. J. O. P. FERREIRA, D. P.; SOUSA, D. P.; NUNES, H. G. G.C.; BARBOSA, A. V. C. Trocas Gasosas do Feijao-Caupi Cultivado no Nordeste Paraense em Resposta à Deficiência Hídrica Forçada Durante a Fase Reprodutiva. **Revista Brasileira de Meteorologia**, v. 35, n. 1, p. 13-22, 2020.

TAIZ, L.; ZEIGER, E.; MOLLE R, I. M.; MURPHY, A. **Fisiologia e desenvolvimento vegetal**. 6. ed. Porto Alegre: Artmed, 2017. 858 p.