

ESTIMATIVAS DA EVAPOTRANSPIRAÇÃO POR SENSORIAMENTO REMOTO PARA O DISTRITO IRRIGADO DE PALO VERDE, CALIFÓRNIA - EUA

C. A. C dos Santos¹, E. G. dos Santos², C. M. U. Neale³

RESUMO: O principal objetivo deste trabalho foi estimar e validar a evapotranspiração real diária (*ETr*) para uma cultura de alfafa, localizada no PVID, CA, EUA. Foram utilizados os métodos micrometeorológicos da Razão de Bowen e o algoritmo S-SEBI para a obtenção da *ETr* tendo a cultura da alfafa como referência. Os resultados mostraram que houve uma subestimação da *ETr* obtida pelo algoritmo S-SEBI, quando comparada com a *ETr* medida pelo método da razão de Bowen na torre experimental, o qual observou-se um erro médio percentual de 10%. Por outro lado, quando se correlacionou os resultados obtidos pelo S-SEBI com os dados observados em superfície verificou-se que existe uma boa concordância, as quais se mostraram com estatisticamente significativas ao nível de 1%. Assim, o S-SEBI se apresenta como uma ferramenta promissora na obtenção da distribuição espacial da *ETr*.

PALAVRAS-CHAVE: Evapotranspiração, S-SEBI, Balanço de energia.

ESTIMATES OF EVAPOTRANSPIRATION BY REMOTE SENSING FOR PALO VERDE IRRIGATION DISTRICT, CALIFORNIA - USA

ABSTRACT: The main objective of this study was to estimate and validate the daily actual evapotranspiration (*ETr*) for alfalfa crop, located in PVID, CA, USA. The micrometeorological method of the Bowen Ratio and the S-SEBI algorithm were used to obtain *ETr* with alfalfa as a reference crop. Results showed that there was an underestimation of the *ETr* obtained by the S-SEBI algorithm when compared to the measured values by the Bowen ratio energy balance method, which showed a mean percentage error of 10%. On the other hand, when the S-SEBI results were correlated with the observed surface data, there was a good agreement, which was statistically significant at the 1% level. Thus, S-SEBI presents itself as a promising tool in obtaining the spatial distribution of *ETr*.

KEYWORDS: Evapotranspiration, S-SEBI, remote sensing.

¹ Professor, Universidade Federal de Campina Grande - UFCG, CEP 58.109-970, Campina Grande, PB. Fone (83) 21011202. E-mail: carlos.santos@ufcg.edu.br.

² Doutorando, Unidade Acadêmica de Ciências Atmosféricas, UFCG, Campina Grande, PB.

³ Director of Research, Robert B. Daugherty Water for Food Global Institute, Lincoln, Nebraska, USA

INTRODUÇÃO

Em regiões áridas e semiáridas onde o clima é caracterizado pela precipitação menor do que a taxa de evapotranspiração (*ET*), a quantidade de água é insuficiente para satisfazer as variadas demandas de sua população. Essas áreas possuem características ambientais singulares que, nitidamente, as diferenciam de outras tornando a água o recurso natural mais limitante. Neste contexto, a *ET*, que representa o fluxo de vapor de água da superfície e da vegetação para a atmosfera, é um componente importante do balanço hídrico e de energia da superfície. Nessas regiões a agricultura depende fortemente da irrigação onde a água é desviada dos rios, lençóis freáticos, aquíferos e lagos. No entanto, com as mudanças de clima e intensificação do uso do solo, os escoamentos de muitos rios mostraram tendências de diminuição durante os últimos 50 anos (Zhang et al., 2011). Enquanto isso, o aumento das necessidades de água para usos domésticos, industriais e ambientais, tem levado à redução de água doce nessas regiões (Vörömarty et al., 2000).

A agricultura irrigada é um dos maiores consumidores de água doce (Ward e Trimble, 2004). Por esta razão, o conhecimento das taxas de evapotranspiração em uma região é uma questão crítica que permite aos gestores desenvolver estratégias para a operação eficiente dos recursos hídricos. Infelizmente, as medições de evapotranspiração são escassas e caras. Medições reais de fluxos de vapor requerem instrumentos especializados, como lisímetros (López-Urrea et al., 2006), equipamentos de razão de Bowen (Jara et al., 1998) ou de instrumentação específica para calcular os fluxos instantâneos de momentum e vapor para aplicar métodos como o dos vórtices turbulentos (Rana e Katerji, 2005).

Devido à semiaridez do clima, em algumas regiões agrícolas no mundo, a produção agrícola em escala comercial é substancialmente obtida com a irrigação. Assim, o monitoramento do uso da água na agricultura, com técnicas de sensoriamento remoto, tem sido tópicos de interesse para o seu manejo sustentável, além de constituir em elementos indispensáveis ao planejamento dos recursos hídricos. Em escala regional, existem métodos que usam imagens de satélite e dados meteorológicos de superfície para calcular a *ET*. Um exemplo destes métodos é o S-SEBI (*Simplified Surface Energy Balance Index*) (Roerink *et al.*, 2000), que tem sido utilizado em estudos como mecanismo para a obtenção da *ET* para grandes áreas. Assim, o objetivo principal desse estudo foi estimar e validar a evapotranspiração real diária para a cultura da alfafa obtida por sensoriamento remoto no Distrito Irrigado de Palo Verde (PVID), Califórnia (EUA), para dias de céu claro nos anos de 2007 e 2008.

MATERIAL E MÉTODOS

Área de estudo e dados

A área de estudo para este trabalho é o Distrito Irrigado de Palo Verde (PVID), situado ao sul do estado da Califórnia (EUA) (Figura 1). É uma região irrigada na Bacia Hidrográfica do Rio Colorado (BHRC), nas proximidades do deserto de Sonora, com o clima semiárido e com baixos índices de precipitação. As culturas predominantes são cítricas e alfafa.

Para validação dos resultados obtidos por sensoriamento remoto foi utilizado o sistema do balanço de energia CR10-3C confeccionado pela *Radiation and Energy Balance Systems, Inc.* (REBS), com os sensores para a medição de temperatura e umidade instalados, em geral, a 0,5 e 1 metro acima do dossel da alfafa. Os componentes do Balanço de Energia por Razão de Bowen (BERB) (Bowen, 1926) foram armazenados a cada 15 minutos, com médias dos fluxos de energia obtidas a cada 30 minutos, sendo determinadas através de dois períodos de 15 minutos, pois os sensores mudam de posição a cada 15 minutos. Os fluxos de calor sensível e latente foram obtidos mediante as equações 6 e 7. O fluxo de calor no solo foi obtido através de 3 fluxímetros, modelo HFT3.1, instalados a 8 cm de profundidade. O saldo de radiação foi medido com 3 saldo radiômetros modelo THRDS7.1 instalados a 2 m acima do dossel. Foi utilizado um piranômetro do modelo PDS7.1 para medir a radiação solar incidente. Na obtenção da umidade e temperatura do solo foram utilizados sensores dos modelos SMP1 e STP, respectivamente (CHATTERJEE, 2010).

Metodologia

Para este estudo foram utilizadas imagens de dias com céu claro do sensor *Thematic Mapper (TM)* a bordo do satélite Landsat 5, referente aos anos de 2007 e 2008 do PVID. Este satélite possui resolução espacial de 30 m e 120 m nos canais reflectivos e termal, respectivamente, e a órbita/ponto de interesse neste estudo foi a 039/037.

Foi utilizado o algoritmo S-SEBI para a estimativa dos componentes: saldo de radiação (*Rn*), fluxo de calor no solo (*G*), fluxo de calor sensível (*H*), fluxo de calor latente (LE), fração evaporativa (Λ), fração de evapotranspiração (*ET_f*) e evapotranspiração real diária (*ET_r*).

A metodologia para obtenção do *Rn* está descrita em Santos e Silva (2010). O valor de *G* é computado segundo a equação empírica desenvolvida por Bastiaanssen (2000):

$$G = \left[\frac{T_s}{\alpha} \left(0,0038\alpha + 0,0074\alpha^2\right) \left(1 - 0,98NDVI^4\right)\right] R_n$$
(1)

Onde, T_s é a temperatura da superfície (°C), α é o albedo da superfície, *NDVI* é o índice de vegetação da diferença normalizada e R_n é o saldo de radiação (W m⁻²).

As etapas do algoritmo S-SEBI, para estimar os fluxos de calor sensível (*H*) e calor latente (*LE*), através da fração evaporativa (Λ) (SOBRINO et al., 2005) estão descritas a seguir.

O cálculo da fração evaporativa para cada pixel com reflectância α_0 e temperatura T_0 foi obtido da seguinte forma (ROERINK et al., 2000; SOBRINO et al., 2007): 1) determinação da reflectância dependente da temperatura T_{LE} , onde $LE_{max}(\alpha_0) = R_n - G$ e H = 0; 2) determinação da reflectância dependente da temperatura T_H , onde $H_{max}(\alpha_0) = R_n - G$ e LE = 0.

A fração evaporativa (Λ) para um pixel particular foi calculada como a razão dada por:

$$\Lambda = \frac{T_H - T_0}{T_H - T_{LE}} \tag{2}$$

As características espaciais da reflectância da superfície e da temperatura da superfície juntos com a temperatura média por unidade de reflectância podem ser vistas em Santos e Silva (2010). As equações lineares, que representam os limites máximo e mínimo, podem ser escritas como:

$$T_H = a_H + b_H \alpha_0 \tag{3}$$

$$T_{LE} = a_{LE} + b_{LE} \alpha_0 \tag{4}$$

As variáveis de regressão a e b são locais e temporais. Onde a e o termo independente e b e o termo que está em função da reflectância da superfície.

Substituindo a relação observada por $T_H e T_{LE}$, a fração evaporativa é escrita como:

$$\Lambda = \frac{a_{H} + b_{H}\alpha_{0} - T_{0}}{a_{H} - a_{LE} + (b_{H} - b_{LE})\alpha_{0}}$$
(5)

Uma vez determinada a Λ , os fluxos de calor sensível (*H*) e latente (*LE*) serão calculados conforme descrito abaixo (SANTOS e SILVA, 2010):

$$H = (1 - \Lambda)(R_n - G)$$
(6)
$$LE = \Lambda(R_n - G)$$
(7)

A ET_a determinada a partir do S-SEBI foi obtida da evapotranspiração real horária (ET_h) (*mm/h*), que é fornecida através da densidade de fluxo de calor latente *LE*,

$$ET_h=3600 LE/L$$
 (8)

Sendo *L* é o calor latente de vaporização da água ($L = 2,45 \times 10^6$ J kg⁻¹) e 3600 é o fator de conversão de valores instantâneos da imagem de *LE* para valores horários.

Em seguida foi realizado a obtenção da fração de evapotranspiração de referência horaria, FET_{0_h} , que foi obtida pela razão entre a ET_h e a evapotranspiração de referência horaria, ET_{0_h} , calculada pelo método da FAO Penman-Monteith (Allen et al., 1998), com dados da estação meteorológica instalada na área estudada:

$$FET_{0_h} = ET_h / ET_{0_h}$$
⁽⁹⁾

Considerando que o valor da $FET_{0_h} = FET_{0_24}$, pois de acordo com Trezza (2002) o comportamento de FET_{0_h} é relativamente constante em todo o período diurno. Logo, a *ETr* diária (mmdia⁻¹) foi dada pela equação seguinte:

$$ET_r = FET_{0_h} ET_{0_24} \tag{10}$$

A análise estatística foi feita utilizando o Erro Médio Percentual (EMP), Erro Médio Absoluto (EMA), Raiz do Erro Quadrático Médio (REQM), Erro Absoluto (EA) e o Erro Percentual (EP), dados pelas expressões abaixo (Wilks, 2006).

RESULTADOS E DISCUSSÃO

Para a validação do algoritmo S-SEBI foi utilizada uma torre micrometeorológica situada no PVID com a localização Latitude: 33,46555; Longitude: -114,71354, tendo como referência a cultura da alfafa, durante dias de céu claro nos anos de 2007 e 2008 com o objetivo de comparar com os valores da evapotranspiração real diária (ET_r) obtidos pelo método do BERB.

Nas Tabelas 1 e 2 estão apresentados os valores da ET_r diária, para dias de céu claro nos anos de 2007 e 2008, respectivamente, com as medições *in situ* e estimadas pelo algoritmo S-SEBI, também estão presentes alguns parâmetros estatísticos que explicam o comportamento entre essas duas variáveis. Verifica-se que houve uma subestimação dos dados obtidos pelo S-SEBI, porém de forma geral, os valores estimados pelo algoritmo, o qual é fundamentado em técnicas de sensoriamento remoto se mantiveram muito próximos dos valores medidos pelo método da Razão de Bowen. Para o ano de 2007 os erros médios absoluto e percentual foram de 0,89 mmdia⁻¹ e 11,44%, respectivamente. Estes resultados estão compatíveis com os encontrados por Santos e Silva (2010), que estimaram a *ETr* em uma vegetação tamarisk, localizada na área de preservação ambiental de Cibola (Blythe, CA/EUA) onde o mesmo obteve erros quadrático médio e percentual médio de 0,5 mmdia⁻¹ e 10,6%, respectivamente.

Heichel (1983) encontrou taxas de evapotranspiração máxima da alfafa por volta de 7,6 mm/dia a 9,0 mm/dia, embora extremos de 4,1 mm/dia a 12 mm/dia também tenham sido encontrados. Cunha et al. (1994) utilizaram um lisímetro de pesagem para medir a

evapotranspiração máxima diária da alfafa em Eldorado do Sul, RS, em 7 períodos de corte, encontrando valores de 1,7 mm/dia a 7,1 mm/dia. A *ETr* diária máxima da alfafa não excedeu a 10 mm/dia. Chatterjee (2010), que investigou a perda de água por *ET* no PVID a partir de imagens EVI MODIS, obteve erros inferiores a 8%. Estes valores diários de *ET* medidos e modelados concordou em até 10%, o que está dentro da incerteza nas medições.

O ano de 2007 obteve uma melhor correlação (r = 0,835) em comparação ao ano de 2008 (r = 0,808) (Figuras 2a e 2b), este fato pode ser justificado pelo maior número de imagens sem presença de nuvens disponíveis para o ano de 2008, fazendo com que esta correlação torne-se o mais próximo da realidade. Todas as correlações foram significativas para o nível de 1%. Os resultados encontrados para o ano de 2008 apresentaram erro médio percentual de 18,8%, já um estudo realizado por Mattar et al., (2014) mostrou erros relativos variando entre 5 e 15%, para a *ETr* diária.

Observa-se que no ano de 2007 a ET_r estimada pelo método S-SEBI obteve um coeficiente de correlação r = 0,835, o que implica em um coeficiente de determinação r² = 0,697, ou seja, o modelo linear explica, portanto, 69,7% da variância total dos dados da ET_r estimada pelo método S-SEBI, indicando haver uma boa correlação entre a ET_r estimada e a observada, além disso, o erro percentual variou entre 0,42 e 25,8% com um erro médio percentual de 11,44% e 0,89 de erro médio absoluto. A significância do coeficiente (r) foi baseada no teste de Student (t), para o nível de significância de 1%, com 9 graus de liberdade da amostra (v), o que resultou em t_{tabelado}= 2,821contra t_{calculado}= 4,016. Como t_{calculado} > t_{tabelado}, a hipótese nula de que o r amostral foi obtido em população *p*=0 foi rejeitada e a hipótese não nula foi aceita.

Para o ano de 2008, a ET_r obteve um coeficiente de correlação r = 0,808, resultando em um coeficiente de determinação r² = 0,654, logo o modelo linear explica 65,3% da variância total dos dados da ET_r estimada. O erro percentual para a ET_r esteve entre 2,51 e 34,70% e os erros médio percentual e absoluto foram de 18,80% e 1,14 respectivamente. O teste de Student (t), para o nível de significância de 0,01 e 15 graus de liberdade da amostra (v) resultou em t_{tabelado} = 2,602 contra t_{calculado} = 4,952. Como o valor calculado é maior que valor tabelado t_{calculado} > t_{tabelado}, a hipótese não nula foi aceita.

Esses resultados mostram que existem uma boa concordância entre os dados observados em superfície com aqueles obtidos pelo algoritmo S-SEBI, a utilização do teste t-Student mostrou que os dados são estatisticamente significativos ao nível de 1%, fazendo com que este método possa ser utilizado para estimar a ET_r em áreas com as mesmas características deste estudo.

CONCLUSÕES

De acordo com este estudo, o método S-SEBI se mostrou uma técnica simples e com uma boa precisão para a obtenção da evapotranspiração real diária, onde se observou um erro máximo de aproximadamente 20% e um erro médio em torno de 10%, estes erros são aceitáveis devido a todas as interferências existentes entre a atmosfera e a superfície. Uma vez que esse método só depende de informações da temperatura do ar no momento da passagem do satélite, o qual pode ser substituído pela temperatura do pixel frio estes resultados mostram a empregabilidade do S-SEBI para regiões onde existe um contraste entre áreas úmidas (pixel frios) e áreas secas (pixel quentes) e regiões onde não existem redes de estações meteorológicas bem distribuídas.

AGRADECIMENTOS

Os autores agradecem ao CNPq e CAPES pelo o financiamento da pesquisa e à Utah State University pelo apoio logístico e científico.

REFERÊNCIAS BIBLIOGRÁFICAS

ALLEN, R.G.; PEREIRA, L.S.; RAES, D.; SMITH M. Crop Evapotranspiration. Guidelines for Computing Crop Water Requirements – FAO Irrigation and Drainage Paper. No. 56 FAO, Rome, Italy, 300 p. 1998.

BASTIAANSSEN, W. G. M. SEBAL- based sensible and latent heat fluxes in the irrigated Gediz Basin, Turkey. **Journal of Hydrology**, v. 229, p. 87-100, 2000.

BOWEN, I. S. The ratio of heat losses by conduction and by evaporation from any water surface. **Physical Review**, v. 27, p. 779-787, 1926.

CHATTERJEE, S. Estimating Evapotranspiration Using Remote Sensing: A Hybrid approach between Modis Derived Enhanced Vegetation Index, Bowen Ratio System, and Ground Based Micro-meteorological Data. 192f. Tese (Doctor of Philosophy). Wright State University, 2010.

CUNHA, G. R. da; PAULA, J. R. F. de; BERGAMASCHI, H.; SAIBRO, J. C. de; BERLATO, M. A. Evapotranspiração e eficiência no uso da água em alfafa. **Revista Brasileira de Agrometeorologia**, Santa Maria, v. 2, p. 23-27, 1994.

HEICHEL, G. H. Alfalfa. In: TEARE, I. D.; PEET, M.M. Crop-water relations. New York: John Wiley, 1983. cap. 4, p.128-155.

JARA, J.; STOCKLE, C .O; KJELGAARD, J. Measurement of evapotranspiration and its components in a corn (Zea mays L.) field. **Agricultural and Forest Meteorology**, v. 92, n. 2, p. 131-145, 1998.

LÓPEZ-URREA, R.; MARTÍN DE SANTA OLALLA, F.; FABEIRO, C.; MORATALLA, A. Testing evapotranspiration equations using lysimeter observations in a semiarid climate. **Agricultural Water Management**. v.85, p. 15-26, 2006.

MATTAR, C.; FRANCH, B.; SOBRINO, J.A.; CORBARI, C.; JIMÉNEZ-MUÑOZ, J.C.; OLIVERA-GUERRA, L.; SKOKOVIC, D.; SÓRIA, G.; OLTRA-CARRIÒ, R.; JULIEN, Y.; MANCINI, M. Impacts of the broadband albedo on actual evapotranspiration estimated by S-SEBI model over an agricultural area. **Remote Sensing of Environment**. v. 147, p. 23–42, 2014.

RANA, G., KATERJI, N. Measurement and estimation of actual evapotranspiration in the field under Mediterranean climate: a review. **European Journal of Agronomy**, v. 13, p. 125-153, 2005.

ROENRINK, G. J.; SU, Z.; MENENTI, M.A Simple Remote Sensing Algorithm to Estimate the Surface Energy Balance. **Physics and Chemistry of the Earth (B)**, v. 25, p. 147-157, 2000.

SANTOS, C. A. C., SILVA, B. B. Obtenção dos fluxos de energia à superfície utilizando o algoritmo S-SEBI. **Revista Brasileira de Meteorologia**, v.25, p. 365 - 374, 2010.

SOBRINO, J. A., GÓMEZ, M., JIMÉNEZ MUÑOZ, J. C., OLIOSO, A., CHEHBOUNI, G. A simple algorithm to estimate evapotranspiration from DAIS data: Application to the DAISEX Campaigns. Journal of Hydrology, v. 315, p. 117-125, 2005.

SOBRINO, J. A., GÓMEZ, M., JIMÉNEZMUÑOZ, J. C., OLIOSO, A. Application of a simple algorithm to estimate daily evapotranspiration from NOAA-AVHRR images for the Iberian Peninsula. **Remote Sensing of Environment**, v.110, p.139-148, 2007.

TREZZA, R. Evapotranspiration using a satellite-based Surface energy balance with standardized ground control. 247f. Thesis (Doctor of Philosophy in Biological and Agricultural Engineering). Utah State University. Logan, Utah, 2002.

VÖRÖMARTY, C.J.; GREEN, P.; SALISBURY, J.; LAMMERS, R.B. Global water resources: vulnerability from climate change and population growth. **Science**, v. 289, p. 284-288, 2000.

WARD, A. D.; TRIMBLE, S. W. Environmental Hydrology. Londres: CRC Press, p. 465, 2004.

WILKS, D. S. Theoretical probability distributions. In: Statistical methods in the atmospheric sciences. San Diego: Academic Press, p. 102-104, 2006.

ZHANG, Q.; SINGH, V.P.; SUN, P.; CHEN, X.; ZHANG, Z.; LI, J. Precipitation and streamflow changes in China: changing patterns, causes and implications. **Journal Hydrology**, v. 410, p. 204-216, 2011.

Lista de Figuras

Figura 1. Localização da área de estudo: Distrito Irrigado de Palo Verde (PVID) no Baixo Rio Colorado, juntamente com as áreas irrigadas.

Figura 2. Gráficos de dispersão entre a *ETr* observada e estimada pelo S-SEBI, para dias de céu-claro referentes aos anos de a) 2007 e b) 2008, respectivamente. * significa que a correlação é confiável ao nível de 99% de acordo com o teste t-student.

Lista de Tabelas

Tabela 1. Evapotranspiração real observado (ET_{robs}) (mmdia⁻¹), evapotranspiração real estimado ($ET_{rS-SEB1}$) (mmdia⁻¹), erro absoluto (EA) e percentual médio (EP) e raiz do erro quadrático médio (REQM), para dias de céu-claro referentes ao ano de 2007.

Dias juliano	ETrobs	ET _r s-sebi	EA(mmdia ⁻¹)	EP (%)
128	7,3	6,8	0,5	6,6
144	5,9	7,1	1,2	20,1
160	9,2	7,9	1,3	14,5
176	9,5	7,1	2,5	25,8
192	9,3	8,2	1,2	12,6
224	7,0	7,0	0,0	0,4
240	5,4	4,9	0,5	9,5
256	4,8	4,8	0,0	0,4
272	6,3	5,5	0,8	13,1
REQM	1,1			
EMP (%)	11,4			
EMA	0,9			

Dias juliano	ETrobs	ET _r S-SEBI	EA(mmdia ⁻¹)	EP (%)
19	2,1	2,8	0,7	32,4
42	3,2	3,6	0,4	12,8
67	4,8	4,9	0,1	2,5
83	4,4	3,6	0,8	17,6
99	5,2	7,0	1,1	18,2
115	7,2	6,0	1,1	15,4
131	6,7	7,2	0,5	8,1
147	6,5	7,1	0,5	8,4
163	9,1	7,3	1,8	19,9
170	9,1	7,4	1,7	18,7
195	5,4	4,1	1,5	26,4
211	8,3	5,4	2,9	34,7
218	7,8	7,0	0,7	9,1
234	4,7	3,6	1,1	23,4
259	6,5	4,3	2,2	34,2
REQM	1,5			
EMP (%)	18,0			
EMA	1,4			

Tabela 2. Evapotranspiração real observado (ET_{robs}) (mmdia⁻¹), evapotranspiração real estimado ($ET_{rS-SEBI}$) (mmdia⁻¹), erro absoluto (EA) e percentual médio (EP) e raiz do erro quadrático médio (REQM), para dias de céu-claro referentes ao ano de 2008.