

FLUORESCÊNCIA DA CLOROFILA a EM PORTA-ENXERTO DE TANGERINEIRA COM SWINGLE SOB SALINIDADE DA ÁGUA

M. E. B. Brito¹, G. N. B. Sales²; R. C. L. Moreira³; L. A. Silva⁴; A. S. Melo⁵; I. B. Ferreira²

RESUMO: Objetivou-se avaliar a fluorescência da clorofila *a* de porta-enxertos de citros oriundos do cruzamento entre a tangerineira Sunki Comum (TSKC) [C. sunki (Hayata) hort. ex Tanaka] com o citrumelo Swingle (C. paradisi Macfad x Poncirus trifoliata) (CTSW) durante a fase de formação de porta-enxerto sob águas salinizadas. O experimento foi desenvolvido em ambiente protegido (casa de vegetação) da Universidade Federal de Campina Grande, Campus de Pombal, onde se estudou 23 genótipos de porta-enxerto irrigados com dois níveis de salinidade da água, perfazendo um esquema fatorial 23 x 2, com 4 repetições, sendo 20 genótipos oriundos do cruzamento TSKC x CTSW e três genótipos adicionais, o limoeiro Cravo Santa Cruz (LCRSTC), o híbrido entre o limoeiro Volkameriano (LVK) com o limoeiro Cravo (LCR) (LVK x LCR – 038) e a tangerineira Sunki Tropical. As plantas se desenvolveram em tubetes de 50 mL até os 75 dias após a semeadura (DAS), quando foram transplantadas para sacolas plásticas com capacidade de 2.000 ml, sendo iniciada a irrigação com água salina aos 90 dias após a semeadura (DAS), finalizando-se aos 210 DAS, determinando-se variáveis de fluorescência nas fases escuras e claras aos 2, 60 e 90 dias após o início do estresse. A eficiência quântica do fotossistema II não foi afetada pela salinidade na maioria dos genótipos do cruzamento entre a tangerineira Sunki Comum com o Citrumelo Swingle, denotando tolerância.

PALAVRAS-CHAVE: Citrus spp, eficiência fotoquímica e estresse salino

CHLOROPHYLL *a* FLUORESCENCE IN ROOTSTOCKS OF MANDARIN WITH SWINGLE HYBRIDS UNDER SALINE WATER

SUMMARY: In order to evaluated the chlorophyll *a* fluorescence of citrus rootstocks from crossing between Common Sunki mandarin (TSKC) with Swingle Citrumelo (CTSW) during rootstock formation under salinized water. The experiment was realized in greenhouse at

¹ Professor, Dr. Universidade Federal de Sergipe, Campus do Sertão, bolsista PQ do CNPq. Nossa Senhora da Glória, SE, marcoseric@pq.cnpq.br;

² Graduando em Agronomia, UAGRA-CCTA-UFCG, Pombal, PB, giulianasales@outlook.com, erllantavares@gmail.com

³ Mestre em Horticultura Tropical, PPGHT-UAGRA-CCTA-UFCG, Pombal, PB, rosanaalmeidapb@yahoo.com.br;

⁴ Doutorando em Engenharia Agrícola, UAEA-CTRN-UFCG, Campina Grande, PB, luderlandioandrade@gmail.com;

⁵ Professor Dr. DBO-UEPB, bolsista PQ do CNPq, Campina Grande, PB, alberto@pq.cnpq.br;

federal University of Campina Grande, Pombal Campus, where was studied 23 citrus genotypes irrigated with two saline water levels, using a factorial scheme 23 x 2, with four replications, being 20 genotypes from crossing TSKC x CTSW and three additional genotypes, the Santa Cruz Rangpur lime (LCRSTC), the hybrid between the Volkamer Lemon (LVK) and Rangpur lime (LCR) (LVK x LCR – 038 and Tropical Sunki mandarin. The plants growth on tubes of 50 mL of capacity until 75 days after sowing (DAS), when it were put on bag of 2,000 mL of capacity. The saline stress was from 90 DAS until 210 DAS. Fluorescence variables were determined in the dark and light phases at 2, 60 and 90 days after the onset of saline stress. The quantum efficiency of photosystem II was not affected by salinity in most of the genotypes of the cross between the Sunki Common Mandarin and the Swingle Citrumelo, denoting tolerance.

KEYWORDS: Citrus spp, photochemical efficiency and saline stress.

INTRODUÇÃO

O Brasil tem se destacado pela elevada produção de citros, sendo o maior exportador de suco concentrado de laranja, com uma produção estimada para o ano de 2016 superior a 16 milhões de toneladas de frutas (IBGE, 2016), entre as regiões produtoras, destaca-se o Nordeste, que responde por cerca de 11% da produção nacional (IBGE, 2016).

Na região Nordeste do país, a citricultura representa geração de emprego e renda, notadamente nos estados da Bahia, Sergipe. Todavia, a produtividade das plantas é aquém do potencial da cultura, fato relacionado a baixas precipitações e alta evapotranspiração, o que poderia ser suprido pelo uso de tecnologias como a irrigação, mas que também é limitada pela presença, na maioria áreas, de recursos hídricos que possuem elevado teor de sais (Audry & Suassuna, 1995; Medeiros et al., 2003), esta concentração pode ser um fator limitante ao desenvolvimento das plantas cítricas, por serem sensíveis ou moderadamente sensíveis à salinidade (Levy & Syvertsen, 2004; Syvertsen & Garcia Sanchez, 2014).

Todavia, tal grau de tolerância tem sido diferente entre genótipos de citros (Fernandes et al., 2011) identificando-se no uso destes tipos de materiais uma alternativa para o cultivo da fruteira em condições de salinidade do solo e da água. Neste sentido, o uso de porta-enxertos oriundos do cruzamento entre a tangerineira Sunki e o Citrumelo Swingle podem contribuir com a obtenção de materiais com características de tolerância, tendo em vista as qualidades expressas por estes materiais e o aumento no seu uso como porta-enxerto (Hussain et al., 2012).

No processo de seleção, variáveis relacionadas ao crescimento, a fisiologia e a bioquímicas devem ser ultilizadas (Soares Filho et al., 2016), verificando-se no estudo da fluorescência da clorofila o potencial para identificação, principalmente, de condições de efeito iônico em plantas sob condições de estresse salino (Sousa et al., 2016).

Assim, objetivou-se estudar a fluorescência da clorofila *a* de porta-enxertos de citros oriundos do cruzamento entre a tangerineira Sunki Comum (TSKC) [*C. sunki* (Hayata) hort. ex Tanaka] com o citrumelo Swingle (*C. paradisi* Macfad x *Poncirus trifoliata*) (CTSW) durante a fase de formação de porta-enxerto sob águas salinizadas.

MATERIAL E METÓDOS

O experimento foi desenvolvido em ambiente protegido (casa de vegetação) do Centro de Ciências e Tecnologia Agroalimentar - CCTA da Universidade Federal de Campina Grande - UFCG, localizado no município de Pombal, Paraíba, PB, nas coordenadas geográficas 6°47'20" de latitude S e 37°48'01" de longitude W, a uma altitude de 194 m.

Usou-se um delineamento experimental de blocos ao acaso com tratamentos arranjados em esquema fatorial, composto por dois fatores, a saber:

- a. Dois níveis de salinidade da água de irrigação (CE_a): S₁=0,3 dS m⁻¹ e S₂= 3,0 dS m⁻¹, iniciando-se as aplicações aos 90 dias após a semeadura (DAS) e finalizando-se quando as mudas estavam aptas a enxertia, cerca de 210 dias após semeadura;
- b. Os respectivos níveis de salinidade foram aplicados em 23 genótipos, sendo 20 provenientes do Programa de Melhoramento Genético de Citros da Embrapa Mandioca e Fruticultura PMG Citros e três genótipos adicionais, por constituírem materiais com potencial tolerância à salinidade por Brito (2010) e Barbosa (2013), todos os genótipos utilizados estão dispostos na Tabela 1.

Unindo-se os fatores, obteve-se 46 tratamentos (2 níveis de salinidade x 23 genótipos), repetidos em 4 blocos, sendo cada parcela constituída por 1 planta útil, totalizando 184 parcelas.

O preparo inicial das mudas ocorreu no ambiente protegido da Embrapa Mandioca e Fruticultura, considerando todos os critérios para a formação inicial do cavalinho, a exemplo do uso de sementes idôneas, o controle de pragas e a seleção de plantas de origem nucelar.

Aos 75 dias após a semeadura (DAS), as mudas foram transferidas em sacolas de polietileno preta, com volume de 2.000 mL para o ambiente protegido do Centro de Ciências e Tecnologia Agroalimentar, da UFCG em Pombal, onde permaneceu para a condução do experimento. Durante o período de condução das mudas no ambiente protegido da Embrapa até

os 90 DAS, as mudas receberam água de abastecimento local com baixa condutividade elétrica, 0,3 dS m⁻¹.

Aos 90 DAS iniciou-se a aplicação das águas com distintas salinidades, procedendo-se a determinação da lâmina de irrigação diariamente, utilizando-se do balanço hídrico, obtido por lisimetria de drenagem, adicionando-se uma fração de lixiviação (FL) de 20%. Neste processo, volume aplicado (*Va*) por sacola foi obtido pela diferença entre o volume total aplicado na noite anterior (V_{ta}) e o volume drenado (V_d) na manhã do dia seguinte, aplicando-se a fração de lixiviação, como indicado na expressão 1 para cada tratamento.

$$Va = \frac{Vta - Vd}{(1 - FL)} \,(\mathrm{mL}) \qquad (1)$$

Para realização da coleta da água drenada, as sacolas foram envolvidos por recipientes que permitiram a coleta da água, permitindo mensurar o volume drenado. O manejo nutricional seguiu as recomendações propostas por Girardi (2005), foram adotados todos os demais cuidados de controle de ervas daninhas, prevenção e controle de pragas e doenças, normalmente recomendados na produção de mudas cítricas (Mattos Junior et al., 2005).

A água de irrigação de 3,0 dS m⁻¹ foi preparada de modo a se ter uma proporção equivalente de 7:2:1, entre Na:Ca:Mg, respectivamente, a partir dos sais NaCl, CaCl₂.2H₂O e MgCl₂.6H₂O, relação esta predominante aos íons em fontes de água utilizada para irrigação, em pequenas propriedades do Nordeste brasileiro (Medeiros, 2003; Audry; & Suassuna, 1995).

Determinou-se a fluorescência da clorofila *a*, usando-se de um Fluorômetro de pulso modulado modelo OS5p da Opti Science 2, 60 e 90 dias após o início do estresse, ou seja, as variáveis foram avaliadas aos 92, 150 e 180 dias após semeadura, usando-se metodologias de Genty et al., (1989), Oxborough & Baker, (1997) e Kramer et al., (2004), para determinação de variáveis na condição de adaptação ao escuro e condição de iluminação.

Os dados obtidos foram avaliados mediante análise de variância, teste 'F', seguido por teste de agrupamento de médias (Scott e Knott, p<0,05) para o fator porta-enxerto durante a fase de formação de mudas em cada nível de salinidade da água estudado (FERREIRA, 2011).

RESULTADOS E DISCUSSÃO

Ao estudar os dados de fluorescência da clorofila na fase escura, nota-se, em maneira geral, efeito da salinidade nas variáveis de fluorescência foram mais evidentes aos 90 dias após o início do estresse. Assim, sabendo-se que a eficiência máxima da fotossíntese, dada pela relação entre a fluorescência máxima e a fluorescência variável, que corresponde à energia que

é absorvida pelo complexo-antena não foi afetada, pode-se dizer que os pigmentos conseguiram transformar a energia luminosa em energia química de forma eficiente (Figura 1).

Observando-se que os valores médios para a fluorescência inicial (Fo) variaram entre 222 a 272, para a fluorescência máxima (Fm) a variação ocorreu 993 a 1132, para a fluorescência variável (Fv) os valores oscilaram entre 803 a 859, para a eficiência quântica potencial do fotossistema II (Fv/Fm) os valores variaram de 0,75 a 0,77 entre os níveis de salinidade, sendo que valores acima de 0,75 são considerado adequados para culturas (Silva et al., 2014), não ocorrendo comprometimento do aparato fotossintético.

Analisando-se os dados de fluorescência na fase escura avaliada aos 90 dias de estresse com maior detalhamento (Tabela 2), nota-se que ocorreram diferenças entre genótipos para quase todas as variáveis, o que pode ser relativo a processos de segregação fenotípica, assim como já mencionado nas trocas gasosas, por outro lado, quando se estuda o efeito dos níveis de salinidade da água, constatam-se diferenças em alguns genótipos, notadamente nas variáveis fluorescência máxima e variável e em um genótipo na eficiência quântica do fotossistema II das plantas de citros.

Sob condições de salinidade, verificou-se a formação de dois grupos de genótipos, verificando-se os maiores valores de fluorescência mínima (Fo) e máxima (Fm) da clorofila a nos genótipos TSKC x CTSW-047, TSKC x CTSW-064, TSKC x CTSW-041, TSKC x CTSW-053, TSKC x CTSW-022, TSKC x CTSW-028, TSKC x CTSW-055, LCRSTC e Sunki Tropical, o que pode ser relativo a menor eficiência no processo inicial e final de captação e uso do espectro luminoso, o que vem a reduzir o processo de oxidação da clorofila para liberação de elétrons para a Quinona (Taiz et al., 2015), isso, então, poderá ser evidenciado na taxa de transporte de elétrons e nas perdas de calor fotoquímico e não fotoquímico da clorofila, variáveis estudadas na fase clara.

Já nas variáveis de fluorescência avaliadas em condições de iluminação, diferente do que ocorreu nas variáveis de fluorescência avaliadas na fase escura e de trocas gasosas, notou-se diferenciação entre os níveis de salinidade, especialmente aos 90 dias de estresse (Figura 2), notadamente nas variáveis de rendimento quântico de extinção fotoquímica regulada (Y_{NPQ}), rendimento quântico de extinção fotoquímica não regulada (Y_{NO}), taxa de transporte de elétrons (ETR) e coeficiente de extinção fotoquímico pelo modelo lake (qL).

Deste modo, dar-se-á ênfase ao estudo neste período de avaliação, ressaltando-se que estas variáveis de fluorescência na fase clara representam a perda de calor seja por mecanismos fotoprotetores e não fotoprotetores (Klughammer & Schreiber 2008), o que pode ser o motivo

da maior sensibilidade destas variáveis quando comparado com as trocas gasosas e a fluorescência sob adaptação de luz.

Detalhando os resultados relativos à fluorescência da clorofila na fase clara, avaliada aos 90 dias após o início do estresse (Tabela 3), verifica-se que a maior diferenciação entre os genótipos ocorreram no rendimento quântico de extinção fotoquímica regulada (Y_{NPQ}), no rendimento quântico de extinção fotoquímica não regulada (Y_{NO}) e na taxa de transporte de elétrons (ETR), assim como o efeito do aumento da condutividade elétrica da água.

Relativo ao efeito da salinidade nas variáveis de fluorescência na fase clara, destaca-se diferenças nos genótipos TSKC X CTSW-057, TSKC X CTSW-015 e TSKC X CTSW-019, onde o aumento da concentração de sais ocasionou aumento no Y_{NPQ}, redução no Y_{NO} e redução na taxa de transporte de elétrons (ETR), sendo assim, embora nestes genótipos tenha se notado a manutenção da eficiência quântica do fotossistema II (Fv/Fm), o aumento da concentração de sais proporcionou perdas de energia, reduzindo a ETR, o que vem a acarretar em redução na disponibilidade de energia para os processos seguintes da fotossíntese.

CONCLUSÕES

O cruzamento entre a tangerineira Sunki Comum com o Citrumelo Swingle constitui uma progênie potencial para obtenção de materiais tolerantes à salinidade;

A fotossíntese líquida e eficiência quântica do fotossistema II não são afetadas pela salinidade na maioria dos genótipos do cruzamento entre a tangerineira Sunki Comum com o Citrumelo Swingle, denotando tolerância.

Nos genótipos TSKC X CTSW-057, TSKC X CTSW-015 e TSKC X CTSW-019, com o aumento da concentração de sais há aumento no rendimento fotoquímico não regulado (Y_{NPQ}) e redução no rendimento fotoquímico regulado (Y_{NO}) e na taxa de transporte de elétrons (ETR).

AGRADECIMENTOS

Ao CNPq, pela concessão de recursos via edital Universal 014/2014 e de bolsas de pesquisa; À Embrapa Mandioca e Fruticultura, pelo apoio com as sementes.

REFERÊNCIAS BIBLIOGRÁFICAS

AUDRY, P.; SUASSUNA, J. A Salinidade das águas disponíveis para a pequena irrigação no sertão nordestino: caracterização, variação sazonal e limitações de uso. Recife: CNPq, 1995.128p.

BARBOSA. R.C.A. tolerância à salinidade de genótipos de citros recomendado como portaenxertos / Roberta Chaiene Almeida Barbosa – Pombal, 2013. 80f. Dissertação (Mestrado em Sistemas Agroindustriais) – Universidade Federal de campina Grande, Centro de ciências e Tecnologia Agroalimentar, 2013.

BRITO, M. E. B. **Tolerância de genótipos de citros ao estresse salino.** 2010. 155f. Tese (Doutorado em Engenharia Agrícola) - Universidade Federal de Campina Grande, Campina Grande, 2010.

FERNANDES, P. D.; BRITO, M. E. B.; GHEYI, H. R.; SOARES FILHO, W. dos S.; MELO, A. S. de; CARNEIRO, P. T. Crescimento de híbridos e variedades porta-enxerto de citros sob salinidade. Acta Scientiarum. Agronomy, Maringá, v. 33, n. 2, p. 259-267, 2011.

FERREIRA, D.F. Sisvar: a computer statistical analysis system. Ciência e Agrotecnologia, v. 35, n. 6, p. 1039-1042, 2011.

GENTY, B., BRIANTAIS J-M, BAKER N.R. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. **Biochem Biophys Acta**, v. 990, p. 87 – 92, 1989.

GIRARDI, E.A. Métodos alternativos de produção de mudas cítricas em recipientes na prevenção da morte súbita dos citros, Piracicaba, Dissertação (Mestrado), Escola Superior de Agricultura Luiz de Queiroz - ESALQ, 2005, 73 p.

HUSSAIN, S.; LURO, F.; COSTANTINO, G.; OLLITRAULT, P; MORILLON, R. Physiological analysis of salt stress behavior of citrus species and genera: Low chloride accumulation as an indicator of salt tolerance. **South African Journal of Botany**, [S.L.], v. 81, p. 103-112, 2012.

IBGE. Estatística da produção agrícola Setembro 2016. Disponivel em ftp://ftp.ibge.gov.br/Producao_Agricola/Fasciculo_Indicadores_IBGE/2016/estProdAgr_2013 09.pdf. Acesso em 04/08/2016.

KRAMER, D. M.; JOHNSON, G.; KIIRATS, O.; EDWARDS, G. New fluorescence parameters for determination of QA redox state and excitation energy fluxes. **Photosynthesis Research** v. 79, p. 209-218, 2004.

KLUGHAMMER C., SCHREIBER U. PAM Application notes 2008. v.1; p. 27-35, 2008.

LEVY, Y.; SYVERTSEN, J.P., Irrigation water quality and salinity effects in citrus trees. **Horticulture Review**, Hoboken, New Jersey, v. 30, p. 37–82, 2004.

MATTOS JUNIOR, D.; NEGRI, J.D. de; PIO, R.S; POMPEU JUNIOR, J. **Citros**, Campinas, Instituto Agronômico e Fundag, 2005, 929p.

MEDEIROS, J. F.; LISBOA, R. de A.; OLIVEIRA, M; SILVA JÚNIOR, M. J.; ALVES, L. P. Caracterização das águas subterrâneas usadas para irrigação na área produtora de melãona Chapada do Apodi. **Revista Brasileira de Engenharia Agrícola e Ambiental,** Campina Grande, v. 7, n. 3, p. 469-472, 2003.

OXBOROUGH, K.; BAKER, N.R. An instrument capable of image chlorophyll a fluorescence from intact leaves at very low irradiance and at the cellular and sub-cellular levels of organization. **Plant, Cell and Environment**, v.20, p.1473-1483, 1997.

SILVA, L. A.; BRITO, M. E. B.; SÁ, F. V. DA S.; MOREIRA, R. C. L.; SOARES FILHO, W. DOS S.; FERNANDES, P. D. Mecanismos fisiológicos de percepção do estresse salino de híbridos de porta-enxertos citros em cultivo hidropônico. **Revista Brasileira de Engenharia Agrícola**, v.18, suplementar, p. s1-s7, 2014.

SOARES FILHO, W. S.; GHEYI, H. R.; BRITO, M. E. B.; NOBRE, R. G.; FERNANDES, P. D.; MIRANDA, R. DE S. Melhoramento genético e seleção de cultivares tolerantes à salinidade. In. GHEYI, H. R.; DIAS, N. DA S.; LACERDA, C. F. DE; GOMES FILHO, E. (ed.), **Manejo da salinidade na agricultura: Estudos básicos e aplicados**, Fortaleza – INCTSal, 2016, p. 259-274.

SOUSA, J. R. M. DE; GHEYI, H. R.; BRITO, M. E. B.; LACERDA, C. F. DE; SILVA, F. V. DA; SOARES, F. A. L. Quantum efficiency of photosystem II and production of orange under salt stress and nitrogen fertilization. Revista Brasileira de Engenharia Agrícola e Ambiental, v.20, p.434-440, 2016.

SYVERTSEN, J.P.; GARCIA-SANCHEZ, F. Multiple abiotic stresses occurring with salinity stress in citrus. **Environmental and Experimental Botany**, v. 103, p. 128–137, 2014.

TAIZ L, ZEIGER E, MOLLER, IM, MURPHY, A. **Plant physiology**. 6.ed. Sinauer Associates, 2015. 761 p.

Tabela 1. Genótipos de citros provenientes do programa de melhoramento genético de citros da Embrapa e estudados sob irrigação com águas salinas durante a fase de formação do porta-enxerto. Pombal, 2016.

Ordem	Genótipo	Ordem	Genótipo
1	TSKC x CTSW – 047	13	TSKC x CTSW – 057
2	TSKC x CTSW – 042	14	TSKC x CTSW – 025
3	TSKC x CTSW – 064	15	TSKC x CTSW – 015
4	TSKC x CTSW – 041	16	TSKC x CTSW – 017
5	TSKC x CTSW – 038	17	TSKC x CTSW – 018
6	TSKC x CTSW – 053	18	TSKC x CTSW – 019
7	TSKC x CTSW – 006	19	TSKC x CTSW – 058
8	TSKC x CTSW – 022	20	TSKC x CTSW – 033
9	TSKC x CTSW – 036	21	LCRSTC
10	TSKC x CTSW – 028	22	LVK x LCR – 038
11	TSKC x CTSW – 031	23	SUNKI TROPICAL
12	TSKC x CTSW – 055		

TSKC: Tangerineira Sunki [*Citrus sunki* (Hayata) hort. ex Tanaka] seleção comum; CTSW: citrumelo Swingle (*C. paradisi* Macfad x *Poncirus trifoliata*); LCRSTC: limoeiro Cravo (*C. limonea* L. Osback) Santa Cruz; LVK: limoeiro Volkameriano (*Citrus volkamerina* Ten. & Pasq.); SUNKI TROPICAL: Tangerineira Sunki Tropical.

Tabela 2. Teste de agrupamento de médias e relativos a Fluorescência inicial (Fo), fluorescência máxima (Fm), fluorescência variável (Fv) e eficiência quântica fotoquímica máxima do Fotossistema II (Fv/Fm), aos 90 dias após o início do estresse, de genótipos de citros em função de diferentes níveis de salinidade da água de irrigação.

	Fo		Fm		Fv		Fv/Fm	
GEN	SAL		SAL		SAL		SAL	
	0,3	3	0,3	3	0,3	3	0,3	3
TSKC X CTSW-047	203,25 bA	242,50 aA	941,50 bB	1116,75 aA	738,25 bB	874,25 aA	0,7837 aA	0,7822 aA
TSKC X CTSW-042	246,00 aA	232,75 bA	1114,25 aA	1062,75 aA	868,25 aA	830,00 aA	0,7795 aA	0,7810 aA
TSKC X CTSW-064	270,00 aA	259,50 aA	1157,25 aA	1107,75 aA	887,25 aA	848,25 aA	0,7692 aA	0,7655 aA
TSKC X CTSW-041	227,25 bA	238,50 aA	1037,50 aA	1078,00 aA	810,25 aA	839,50 aA	0,7805 aA	0,7790 aA
TSKC X CTSW-038	228,00 bA	213,00 bA	1095,50 aA	1009,25 bA	867,50 aA	796,25 bA	0,7915 aA	0,7877 aA
TSKC X CTSW-053	250,25 aA	243,75 aA	1123,75 aA	1047,50 aA	873,50 aA	803,75 bA	0,7770 aA	0,7665 aA
TSKC X CTSW-06	258,75 aA	228,25 bA	1140,50 aA	1048,50 aA	881,75 aA	820,25 aA	0,7727 aA	0,7815 aA
TSKC X CTSW-022	234,25 bA	257,50 aA	1081,75 aA	1201,50 aA	847,50 aA	944,00 aA	0,7830 aA	0,7862 aA
TSKC X CTSW-036	193,50 bA	214,50 bA	825,00 bB	998,00 bA	631,50 bB	783,50 bA	0,7652 aA	0,7850 aA
TSKC X CTSW-028	249,00 aA	243,75 aA	1116,00 aA	1061,00 aA	867,00 aA	817,25 aA	0,7762 aA	0,7707 aA
TSKC X CTSW-031	207,25 bA	218,75 bA	949,75 bA	944,00 bA	742,50 bA	725,25 bA	0,7810 aA	0,7675 aA
TSKC X CTSW-055	282,25 aA	288,50 aA	1175,00 aA	1205,25 aA	892,75 aA	916,75 aA	0,7597 aA	0,7602 aA
TSKC X CTSW-057	223,00 bA	215,25 bA	1093,75 aA	1096,25 aA	870,75 aA	881,00 aA	0,7960 aA	0,8025 aA
TSKC X CTSW-025	227,25 bA	238,75 aA	1035,25 aA	1018,50 bA	808,00 aA	779,75 bA	0,7797 aA	0,7642 aA
TSKC X CTSW-015	214,75 bA	239,75 aA	950,50 bA	877,00 bA	735,75 bA	637,25 bA	0,7730 aA	0,7137 bB
TSKC X CTSW-017	240,50 aA	209,00 bA	1104,00 aA	944,00 bB	863,50 aA	735,00 bB	0,7817 aA	0,7780 aA
TSKC X CTSW-018	215,75 bA	216,75 bA	1028,50 aA	985,25 bA	812,75 aA	768,50 bA	0,7890 aA	0,7792 aA
TSKC X CTSW-019	240,00 aA	222,50 bA	1071,50 aA	979,00 bA	831,50 aA	756,50 bA	0,7755 aA	0,7712 aA
TSKC X CTSW-058	232,50 bA	230,50 bA	1040,00 aA	996,25 bA	807,50 aA	765,75 bA	0,7765 aA	0,7685 aA
TSKC X CTSW-033	223,25 bA	204,00 bA	1073,00 aA	870,75 bB	849,75 aA	666,75 bB	0,7897 aA	0,7650 aA
LCRSTC	271,50 aA	247,75 aA	1140,00 aA	1096,50aA	868,50 aA	848,75 aA	0,7615 aA	0,7747 aA
LVK x LCR-038	250,00 aA	245,00 bA	1053,25 aA	1068,75 bA	803,25 aA	823,75 bA	0,7627 aA	0,7707 aA
SUNKI TROPICAL	260,00 aA	232,00 aA	1164,25 aA	1046,50 aA	904,25 aA	814,50 aA	0,7755 aA	0,7770 aA

Tabela 3. Teste de agrupamento de médias entre genótipos e teste F entre salinidade relativos à Fluorescência mínima do tecido vegetal iluminado (Fo'), fluorescência máxima após adaptação à luz saturante (Fm'), rendimento quântico de extinção fotoquímica regulada (Y_{NPQ}), rendimento quântico de extinção fotoquímica não regulada (Y_{NO}), taxa de transporte de elétrons (ETR) e coeficiente de extinção fotoquímico pelo modelo lake (qL) aos 90 dias após o inicio do estresse dos genótipos de citros em função de diferentes níveis de salinidade da água de irrigação.

			Em'		V(NIRO)		
CEN	S/	SAL		SAI		SAI	
GEN	0.3	3	03	3	03	3	
TSKC X CTSW-047	242.76 hA	281.66 hA	3836 50 aA	3392.25 aB	0.4440 bA	0 5490 cA	
TSKC X CTSW-042	290.61 aA	274 83 hA	3773 66 aA	3594 00 aA	0 4240 bA	0.5681 cA	
TSKC X CTSW-064	321.74 aA	307.41 aA	3807.00 aA	3491.00 aA	0.6003 aA	0.6503 bA	
TSKC X CTSW-041	269.13 bA	282.63 bA	3688.50 aA	3711.75 aA	0.4381 bA	0.4617 cA	
TSKC X CTSW-038	266.31 bA	251.96 bA	3591.75 aA	3740.00 aA	0.4794 bA	0.5324 cA	
TSKC X CTSW-053	295.59 aA	290.55 aA	3632.25 aA	3460.50 bA	0.5600 aA	0.6342 bA	
TSKC X CTSW-06	306.94 aA	269.23 bA	3736.00 aA	3660.00 aA	0.5073 bA	0.5827 cA	
TSKC X CTSW-022	276,98 bA	299,35 aA	3747,00 aA	3512,00 aA	0,5044 bA	0,5552 cA	
TSKC X CTSW-036	233,83 bA	253,49 bA	3253,25 bA	3723,25 aA	0,5084 bA	0,4989 cA	
TSKC X CTSW-028	295,20 aA	289,38 aA	3761,00 aB	3429,25 bA	0,5530 aA	0,5171 cA	
TSKC X CTSW-031	245,86 bA	264,36 bA	3362,50 bA	3617,00 aA	0,4482 bA	0,4784 cA	
TSKC X CTSW-055	339,12 aA	342,16 aA	3890,00 aA	3441,50 bB	0,6023 aA	0,6467 bA	
TSKC X CTSW-057	259,03 bA	249,98 bA	3557,00 aA	3723,00 aA	0,3917 bB	0,5620 cA	
TSKC X CTSW-025	267,75 bA	282,66bA	3348,25 bA	3027,75 bA	0,5864 aA	0,6798 bA	
TSKC X CTSW-015	255.32 bB	309.05 aA	3263.50 bA	3291.66 bA	0.6381aB	0.8252 aA	
TSKC X CTSW-017	283,09 bA	247,25 bA	3560,00 aA	3250,75 bA	0,5530 aA	0,6622 bA	
TSKC X CTSW-018	252,34 bA	256,09 bA	3323,25 bA	3235,00 bA	0,5666 aA	0,6965 bA	
TSKC X CTSW-019	284,04 bA	265,22 bA	3566,50 aA	3374,50 bA	0,6410 aB	0.8011 aA	
TSKC X CTSW-058	276,99 bA	274,09 bA	3638,25 aB	3149,66 bA	0,6835 aA	0,6611 bA	
TSKC X CTSW-033	259,97 bA	244,54 bA	3319,75 bA	3105,33 bA	0,5665 aA	0,5691 cA	
LCRSTC	325,85 aA	293,63 aA	3793,75 aA	3705,66 aA	0,5133 aA	0,4906 cA	
LVK x LCR-038	300,90 aA	290,75 bA	3696,00 aA	3522,91 aA	0,4487 bA	0,5562 cA	
Sunki Tropical	307,26 aA	275,06 aA	3779,75 aA	3569,41 aA	0,6039 aA	0,5693 bA	
CEN	Y()	NO)	H	ETR		-qL	
TSKC X CTSW 047	0.5550.0.4	0.4500 aA	27.02 .0	22.67 .	0.0848.24	0.0005.24	
$\frac{13KC \times C15W-047}{TSKC \times CTSW 042}$	0,5559 aA	0,4318 aA	27,92 dA 28.06 a A	22,07 aA	0,0040 aA	0,0905 aA	
TSKC X CTSW-042	0,3739 aA	0,4518 aA	20,90 aA 20,07 bA	17 57 bA	0,1150 aA	0,0713 aD	
$\frac{13}{100} \times \frac{13}{100} \times \frac{100}{100} \times $	0,5990 DA	0,5490 DA	20,07 DA	27.05 aA	0,0075 DA	0,0329 DA	
TSKC X CTSW-041	0,5018 aA	0,5582 aA	26,22 dA 26,17 aA	27,05 aA	0,1037 aA	0,0937 aA	
TSKC X CTSW-058	0,5200 aA	0,4075 aA	20,17 aA	18 35 hA	0,0002 aA	0,0043 bA	
TSKC X CTSW-055	0,4400 DA	0,30570A	22,10 DA	20.05 aA	0,0740 DA	0,0333 DA	
TSKC X CTSW-0022	0,4920 aA	0,4172 aA	24,00 aA	20,95 aA	0,0910 aA	0,0727 aA	
TSKC X CTSW-022	0,4955 aA	0,4447 aA	24,92 dA 24.67 aA	22,32 aA	0,0813 DA	0,0770 aA	
TSKC X CTSW-030	0,4915 aA	0,3010 aA	24,07 aA 22.45 bA	23,22 aA	0,0773 DA	0,0793 aA	
TSKC X CTSW-028	0,4409 DA	0,4828 aA	22,45 0A	24,25 aA	0,0704 DA	0,0922 aA	
TSKC X CTSW-051	0,3317 aA	0,3213 aA 0.3532 hA	10.07 hA	20,22 dA 17 75 hA	0,1014 aA	0,0890 aA	
$\frac{15KC}{TSKC} \times \frac{C15W}{057}$	0,5970 DA	0,3332 UA	19,97 DA	22.00 aB	0,0040 DA	0,0033 DA	
TSKC X CTSW-037	0,0082 aA	0,4379 aD	20,50 aA	22,00 aD	0,1232 aA	0,0012 DB	
$\frac{13}{100} \times \frac{100}{100} \times \frac$	0,4150 DA	0,3202 UA	20,00 DA	10,07 DA 8 00 aP	0,0044 DA	0,0310 DA	
TSKC X CTSW-015	0,3018 DA	0,1747 CB	10,13 DA 22,42 bA	6,90 CD	0,0499 DA	0,0251 DA	
$\frac{13KC \times C15W-017}{TSKC \times CTSW 019}$	0,4409 DA	0,3377 DA	22,42 DA	10,95 DA	0,0723 DA	0,0418 DA	
TSKC X CTSW-010	0.3580hA	0,5054 DA	18 02 bA	0.05 cB	0.0514 bA	0.0433 DA	
TSKC X CTSW-019	0,33090A	0,1700 CD	15,02 UA	7,75 CD	0,0314 DA	0,0234 DA	
TSKC X CTSW-030	0.4335 bA	0,3300 DA	21.77 bA	21.40 aA	0.07/3 bA	0,0407 DA	
ICRETC	0.4355 DA	0,4309 aA	21,77 DA 24 47 a A	21,40 aA	0.00745.0A	0,0077 aA	
I VK v I CD 029	0.4007 aA	0,3034 aA	24,47 aA 27 70 a A	23,05 aA 22,33 aA	0,0925 aA	0,0775 aA	
SUNKI TROPICAL	0,3312 aA 0 3960 hA	0,4306 hA	19 90 hA	22,55 aA 21 68 bA	0.0583 hA	0.0685 hA	

Figura 1. Fluorescência inicial (Fo), fluorescência máxima (Fm), fluorescência variável (Fv) e eficiência quântica fotoquímica máxima do Fotossistema II (Fv/Fm), aos 2, 30 e 90 dias após o início do estresse, de genótipos de citros em função de diferentes níveis de salinidade da água de irrigação.

Figura 2. Fluorescência mínima do tecido vegetal iluminado (Fo'), fluorescência máxima após adaptação à luz saturante (Fm'), rendimento quântico de extinção fotoquímica regulada (Y_{NPQ}), rendimento quântico de extinção fotoquímica não regulada (Y_{NO}), taxa de transporte de elétrons (ETR) e coeficiente de extinção fotoquímico pelo modelo lake (qL) aos 2, 30 e 90 dias após o início do estresse dos genótipos de citros em função de diferentes níveis de salinidade da água de irrigação.